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Executive Summary

Organizations of various sizes and in a wide range of industries are actively using data
in today's business environment to meet their strategic goals. The quest of data-driven
decision-making is causing a significant shift, regardless of the objectives—increasing
profitability, improving efficiency, raising risk tolerance, fostering readiness, promoting
sustainability, or embracing adaptation in a world that is always changing. Businesses
are being compelled by this shift to reconsider how they handle data integration.

Stream processing is a transformative solution for data integration, enabling real-time
analysis and insights. It eliminates the need for batch processing, allowing organizations
to identify trends and anomalies quickly. Stream processing frameworks handle massive
data streams efficiently, enabling seamless integration efforts and enabling faster
data-driven decisions and operational automation.

A comparison of stream processing pipelines was conducted, comparing Bytewax and
Flink. The study found that Flink had 8-25 times more memory utilization than Bytewax,
consuming up to 3 GB per workload. Bytewax was found to be 4.6 times less TCO than
Flink, based on the development, maintenance, and annual infrastructure costs of
running these pipelines just 4 times each. These advantages will add up over time and
project by project, making Bytewax a more cost-effective choice for data stream
processing.

We were impressed with Bytewax and believe Bytewax should merit strong
consideration in any enterprise for a streaming workload.
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Landscape

Data integration and management platforms have evolved to meet the evolving needs
of businesses, with a focus on automation enabled by AI and cloud-native deployments.
Modern methods allow for quick adjustments and efficient data flow between sources
and targets, reducing manual labor and improving user experience. Trust is essential in
data management, and modern data integration platforms must be equipped with
powerful monitoring features to ensure data availability and dependability.

The growing dependence of enterprises on cloud-based data solutions necessitates
cost-effectiveness in cloud environments, resource allocation optimization, and cost
control. Transparency and understanding are the foundations of trust, and modern data
management solutions provide businesses with a comprehensive understanding of
company data and provide thorough lineage routes for tracking important information
back to a reliable original source.

Modern cloud-based data analytics systems can scale dynamically and automatically to
accommodate the increasing demands of many simultaneous and complicated query
executions. The core of effective data use is simplified access, integration, control, and
skillful handling, as well as the investigation and comprehension of new data sources or
existing ones.

Difficulties associated with poor data integration and management can be attributed to
personnel or process problems, inadequate tools, or a reliance on outdated technology.
It is becoming increasingly difficult to ignore the growing need for sophisticated data
integration and management solutions, as it is no longer feasible to continue using
antiquated systems. The time has come for streaming data management, and
integration that has developed to address the issues associated with modern data.

All of these capabilities drive ease of use and the ultimate metric – TCO. In this
benchmark, we assess both, as well as infrastructure utilization, for two streaming data
integration players.

For scenarios demanding immediate or near-real-time insights, traditional data
processing solutions may fall short due to their batch-oriented nature. Apache Flink has
emerged as a powerful alternative in such cases. This open-source framework excels at
handling data streams, allowing for continuous ingestion, analysis, and generation of
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results. With Flink, data is processed as it arrives, enabling quicker identification of
trends, anomalies, and crucial insights to inform real-time decision-making. Flink is a
Java-based stream processor that utilizes the Flink scheduling and management layer
to parallelize tasks and efficiently use the resources that it has been allocated.

Apache Flink has been recognized for its impact on large-scale data management
systems. The project has a large and active community. Leading companies like Airbnb,
Uber, Netflix, and Stripe rely on Flink for mission-critical streaming workloads. In 2023,
Flink experienced a record 22 million monthly downloads, demonstrating its reliability
and scalability in real-time data analytics.

Bytewax is a Python-centric framework that simplifies real-time stream processing tasks
within the Python environment. It allows users to integrate the entire Python ecosystem
into their workflows, including popular environments like Jupyter Notebooks or
RaspberryPi, powerful tools like Hugging Face transformers, Scientific Python tools like
Numpy and Pandas, and frameworks like Streamlit. Bytewax offers stateful operators for
advanced processing and prioritizes data safety with built-in state recovery options. It
also provides native connectors for popular data sources like Kafka, Redpanda,
DynamoDB, and BigQuery, simplifying data ingestion and management. The Rust
engine ensures smooth operation even with demanding workloads, allowing Bytewax to
scale across thousands of workers for maximum efficiency.

Bytewax is young, scrappy, motivated, and ready to put its capabilities against all
players in the growing data streaming market and contribute to organizational goals
very directly through the cultivation of the ultimate resource – enterprise data.
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Ease of Use

This section analyzes the results of our comparison of ease-of-use.

Methodology

We took inspiration from the agile scrum development project management approach.
As experienced consultants in the field, we have extensively used and advocated for the
agile project management methodology when developing and operating information
management projects. The agile methodology is a much bigger subject than the scope
of this paper, but for its purposes, we used a few concepts from an agile methodology in
this study that may be familiar to readers.

● Story – A story is a specific task that needs to be completed to move forward in
developing a new piece of the project or to complete an operational objective.

● Story Size – A story is sized according to how much time and effort is required to
complete it. Sizing a story appropriately is an art and a science that requires
some experience.

● Story Points – Regardless of the sizing method used, the story size is typically
expressed as a numeric value to quantify story work and completion.

To quantify size and points, we used the Fibonacci sequence, which could be likened to
using T-Shirt sizes per the image below. Tasks go from the extra-small (XS) size to the
extra-extra-large (XXL) size. The chart below shows each size and the Fibonacci
number assigned to it.

and so on…

Use Cases

For our ease-of-use comparison, we developed 4 use cases that are table stakes use
cases for data stream processing. We built the pipelines on each platform.

Use Case Pipelines Source-Target
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1. Real-time analytics with stream enrichment Kafka to Kafka
2. Real-time machine learning Kafka to Redis
3. Real-time ingest for Retrieval Augmented Generation (RAG) Kafka to Vector
4. Real-time IoT processing IoT to Kafka

These use cases have a fairly consistent set of development tasks/user stories in all
products in order to develop them into production-ready streaming data pipelines.
These stories include, but are not limited to:

● Create producer connections
● Create consumer/sink connections
● Write data processing functions
● Write stream deserializers into custom objects
● Create message backup scripts
● Connect to reference databases
● Write join and enrichment functions

We developed these use cases using documented best practices by the vendors and
consistently estimated the story points in arrears as we did the tasks in our work
breakdowns1. Then, we converted our story T-shirt sizes to numbers in the Fibonacci
sequence and summed up the story points for each streaming data use case. The
following table is a summary of those total points per use case.

Total Story Points by Use Case

1. Real-time analytics with stream enrichment 9 14
2. Real-time machine learning 7 28
3. Real-time ingest for RAG 9 44
4. Real-time IoT processing 6 52

1 In our approach, we estimated a developer executes an average of 5 story points’ worth of
development work per week.
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A breakdown of the tasks for each use case can be found in the appendix.

In our study, the clear advantage goes to Bytewax because the pure Python approach
and their SDK made coding simple and straightforward for each of our use cases. With
Flink, we had the challenge of coding in Java—resulting in longer code blocks, complex
object orientation, more troubleshooting, and additional error handling for each step.

On a case-by-case basis, this advantage may not seem like much. However, over time
and project after project, these advantages from using Bytewax will add up. If you
consider the case of a single developer building multiple pipelines, development cycles
get longer, and time-to-production gets extended.

Bytewax offers significant advantages within a Python-centric environment. Existing
Python developers can leverage Bytewax for stream processing tasks without needing
to learn Java, a skill required for many functionalities in Apache Flink, such as advanced
windowing and state management. This eliminates the need to onboard team members
with new skill sets, which can significantly reduce project overhead and coordination
efforts. Additionally, by enabling current developers to handle streaming tasks using
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familiar Python tools, Bytewax has the potential to lower training costs associated with
introducing them to a new paradigm like stream processing.

The following table demonstrates this if you consider a developer can achieve an
average of 5 story points worth of development work per week (adding 25% to the story
points for non-development path-to-production activities).

Single Developer Time-to-Production
Per Project

1. Real-time analytics with enrichment 2.6 weeks 4.0 weeks

2. Real-time machine learning 2.0 weeks 8.0 weeks ◄ 4x longer!

3. Real-time ingest for RAG 2.6 weeks 12.6 weeks ◄ 5x longer!

4. Real-time IoT processing 1.7 weeks 14.9 weeks ◄ 9x longer!

Moreover, as we will see in the TCO section, this advantage becomes enormous when
you consider the need to develop, improve, and maintain multiple enterprise-scale
streaming data processing pipelines each year. We will see this when we project the
frequency of these use cases into the enterprise in the TCO section below.
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Infrastructure Utilization

This section analyzes the results of our benchmark comparison of infrastructure
utilization to determine the cloud costs to run and operate these platforms.

In our experience, testing day-in-day-out workloads is more useful for calculating total
cost-of-ownership than testing edge and extreme cases, and we find that the great
majority of our clients who use streaming data pipelines have volumes of less than
200,000 transactions per second.

Since Flink is based on Java and Bytewax is based on Python, we were very interested
in memory utilization because it has a bearing on how much infrastructure we need to
deploy to cover all our pipelines in an enterprise production scenario. Java is of interest
because of the notorious consumption of memory by the Java heap and the frequent
challenge of managing the memory of the Java Virtual Machine (JVM).

We devised three simple test workloads based on common workloads:

1. Word count – counting the words in a data stream—which can mimic any number
of aggregation type activities for streaming data

2. Join – joining two JSON data streams together on a key and producing a
combined stream

3. Window – utilizing a windowing function to make calculations across a moving
window of streaming data

For the test, we used identical transaction rates (200,000 per second). For Flink, we
used its Python SDK (PyFlink) to create an apples-to-apples comparison. We also ran
the workload to a specified amount of time (1 minute for each iteration) and completed
three cycles of each test. We took measurements of memory utilization every second
using SAR2, and we also monitored the memory by process with TOP3 to understand
the baselines and the memory used by Python and Java while the workload was
running.

The following graphs detail the memory utilization measurements we took during our
benchmark.

3 TOP is a widely used command-line utility in Linux and Unix-based systems. The top command
provides a real-time view of various system resources, including memory usage for each running
process.

2 SAR stands for System Activity Report, a command-line tool in Linux and Unix-based systems. The sar
command allows users to monitor and record system resources like CPU usage, network activity, and
yes, memory utilization.
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As you can see, the memory utilization by Flink (PyFlink plus Java) was between 8 and
25 times more than Bytewax, depending on the test, consuming up to 3 GB per
workload.

You can fit 8 to 25 more Bytewax pipelines on a single virtual machine than you
can with Flink. As we will show in the next section, this can have significant
bottom-line cost impacts.
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Total Cost of Ownership

This section analyzes a total cost of ownership scenario for the platforms we tested.

Platform Costs

We tested the open source, community, free versions of these platforms. Please note
that Bytewax offers a platform version with Business and Enterprise tiers which gives
access to:

● Premium connectors
● Management, observability, and data flow dashboards and APIs
● Kubernetes multi-node deployment
● OpenID connectivity and role-based access controls
● Cloud backup
● Private and enterprise-level support

Infrastructure Costs

From our benchmarking exercise described in the previous section, we found memory
consumption to be the largest driver of infrastructure requirements between these two
platforms.

To illustrate this cost scenario, we sampled the pricing of several memory-optimized
EC2 instances available on AWS. Memory-optimized instances are designed to deliver
good performance for workloads that process large data sets in memory. We found that
the average hourly cost of the EC2 instances is a function of vCPU cores and the GB of
RAM. It works out to approximately $0.0124 per GB of RAM per hour.

For the purposes of this cost scenario, we also assumed using AWS Elastic Kubernetes
Service ($0.10 per cluster per hour) across 3 availability zones and 24 data stream
pipeline processes in production.

We utilized RocksDB with Flink to store state, which adds a recommended 40% more
memory consumption4. Bytewax uses SQLite, which adds a negligible amount of
memory to retain state.

Thus, by our calculations, each platform would require the following memory:

4 Depending on your configuration of the default managed memory fraction. Flink recommends 0.4 in
their documentation.
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Memory Consumption

Per Pipeline 0.4 GB 9.6 GB

Total Memory Consumption 4.1 GB 97.9 GB ◄ 10x more memory!

And from this memory consumption, we can derive infrastructure costs for this
configuration and deployment.

Cloud Infrastructure Costs

Per Hour $1.05 $4.35
Per Month $758 $3,130

Per Year $9,096 $37,562 ◄ 4x more cost!

People Time, Effort, and Cost Assumptions

Employees contribute to the initial implementation and largely to the maintenance of
these projects. Their time and effort cannot be discounted. Choosing a platform with a
lower time-effort burden to build, operate, and maintain will free developer time and
energy to work on more strategic projects within the organization. Based on the pipeline
development we did on both of these platforms, detailed above, we provide an estimate
of what an organization might need to have a developer do this for a modest 4 iterations
of each pipeline development per year.

This is our assumption regarding the annual cost of that developer(s).

People Time, Effort, and Costs

Standard Work Time per Year 50 weeks
Story Points Per Developer Per Week 5 points
Average Annual Cash Compensation $150,000
Burden rate 22%
Fully Burdened Annual Labor Cost $183,000

Total Cost of Ownership

To project total of ownership, we made the following calculations.

The following tables break down the development and maintenance costs of running
these platforms.
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Development & Maintenance

Total Story Points Per Year 124 552
Maintenance Points Per Year +25% +30%

Total CICD Points Per Year 155 718 ◄ 4.6x more effort

Developer FTE Needed 0.6 2.9 with Flink!

People Costs $113,460 $525,283

Annual Infrastructure Costs

EC2 Instances $9,096 $37,562
◄ 4.1x more

infrastructure for
Flink!

Total Cost of Ownership

One-year Period
$122,556 $562,846 ◄ 4.6x greater TCO

for Flink!

Bytewax costs over four times less each year with developer costs figured in. Keep in
mind that for customers who require building many more pipelines than this, which will
be most, the developer count would escalate with Flink to support that development.
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Conclusion

A stream processing pipeline comparison between Flink and Bytewax was done.
According to the study, Flink used up to 3 GB of memory per task, which is 8–25 times
more than Bytewax. Based on development, maintenance, and the annual infrastructure
costs of operating these pipelines just four times apiece in a year, Bytewax was shown
to have a TCO that was 4.6 times lower than Flink's, to accomplish the same functions.

Bytewax will eventually become a more affordable option for data stream processing.
These benefits will accumulate over time and project by project.

Bytewax is a robust stream processing framework that is particularly suitable for
enterprise-grade streaming workloads. It operates entirely within the Python ecosystem,
allowing developers to use familiar libraries and environments like Jupyter notebooks for
data exploration and Hugging Face transformers for advanced natural language
processing tasks. This intuitive environment lowers the barrier to entry for developers
and data scientists, accelerating the development and deployment of streaming
applications.

Bytewax excels in handling stateful operations, enabling tasks like joins, windowing, and
aggregations, enabling developers to construct complex workflows that analyze
streaming data in relation to past events. It also prioritizes robustness through built-in
state recovery mechanisms, ensuring critical workloads can withstand potential failures
without data loss.

Bytewax's architecture allows it to distribute processing tasks across thousands of
workers, making it adept at handling even the most demanding streaming data
pipelines. This scalability allows Bytewax to grow alongside business needs, adapting to
ever-increasing data volumes and processing requirements. In conclusion, Bytewax's
user-friendly Python environment, robust stateful processing, built-in state recovery, and
exceptional scalability make it a strong contender for any enterprise considering a
streaming workload solution.

In our evaluation of various stream processing frameworks, Bytewax emerged as
a particularly compelling solution for enterprise-grade streaming workloads.
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Appendix A: Ease-of-Use Story Breakdown

Real-time analytics with stream enrichment

a. Create Kafka producer 1 1

b. Create Kafka consumer 1 1

c. Write data processing function 1 2

d. Write data deserializer to custom object 2 2

e. Create message backup script 2 3

f. Connect to reference database 1 2

g. Write join and enrichment function 1 3

TOTAL 9 14

Real-time machine learning

a. Create Kafka producer 1 1

c. Write data processing function 1 2

d. Write data deserializer to custom object 2 2

d. Create Redis connector 1 5

e. Create PubSub pipeline 1 8

f. Redis set key async I/O operator 1 5

g. Create async micro-batch sync Unnecessary 5

TOTAL 7 28

Real-time ingest for Retrieval Augmented
Generation

a. Create Kafka producer 1 1

b. Write data processing function 1 2

c. Write data deserializer to custom object 2 2
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Real-time ingest for Retrieval Augmented
Generation

d. Write enrichment function 2 5

e. Write custom Pinecone sink 2 21

f. Write RAG query to latest data 1 13

TOTAL 9 44

Real-time IoT

a. Write data processing function 1 2

b. Write data deserializer to custom object 2 2

c. Create Kafka consumer 1 1

d. Create MQTT connectors 1 34

e. Configure MQTT connectors 1 13

TOTAL 6 52
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Appendix B: Code Snippets

We have included snippets of code we used for the test cases. This highlights the ease
of coding with Bytewax compared to PyFlink–even in these simple cases.

NOTE: Input and output connectors and trivial details were removed for brevity and
replaced with ellipses (...). Other standard Python library imports were also removed.

Test 1: Word Count

Bytewax

from bytewax.dataflow import Dataflow
import bytewax.operators as op

...

flow = Dataflow("wordcount")

def tokenize(line):
return re.findall(r'[^\s!,.?":;0-9]+', line)

tokens = op.flat_map("tokenize_input", ..., tokenize)
counts = op.count_final("count", tokens, lambda word: word)
op.output("out", counts, ...)

...

PyFlink

from pyflink.common import WatermarkStrategy, Encoder, Types
from pyflink.datastream import StreamExecutionEnvironment,
RuntimeExecutionMode
from pyflink.datastream.connectors.file_system import (FileSource,
StreamFormat, FileSink, OutputFileConfig, RollingPolicy)

...

env = StreamExecutionEnvironment.get_execution_environment()
env.set_runtime_mode(RuntimeExecutionMode.BATCH)
env.set_parallelism(1)

def split(line):
yield from line.lower().split()
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ds = env.from_collection(...)

ds = ds.flat_map(split) \
.map(lambda i: (i, 1), output_type=Types... \
.key_by(lambda i: i[0]) \
.reduce(lambda i, j: (i[0], i[1] + j[1]))

env.execute()

...

Test 2: Join

Bytewax

from bytewax.dataflow import Dataflow
import bytewax.operators as op

...

flow = Dataflow("join")

inp1 = op.input("inp1", flow, ...)
inp2 = op.input("inp2", flow, ...)

merged_stream = op.merge("merge", inp1, inp2)

...

PyFlink

from pyflink.common import WatermarkStrategy, Row
from pyflink.common.serialization import Encoder
from pyflink.common.typeinfo import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.datastream.connectors import FileSink, OutputFileConfig,
NumberSequenceSource
from pyflink.datastream.execution_mode import RuntimeExecutionMode
from pyflink.datastream.functions import KeyedProcessFunction, RuntimeContext,
MapFunction, CoMapFunction, CoFlatMapFunction
from pyflink.datastream.state import MapStateDescriptor, ValueStateDescriptor
from pyflink.common import JsonRowDeserializationSchema,
JsonRowSerializationSchema

...
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class JoinStream(CoFlatMapFunction):

def open(self, runtime_context: RuntimeContext):
state_desc = MapStateDescriptor('map', Types.INT(), Types.STRING())
self.state = runtime_context.get_map_state(state_desc)

def flat_map1(self, value):
self.state.put(value[0], value[1])

def flat_map2(self, value):
self.state.put(value[0], value[1])

env = StreamExecutionEnvironment.get_execution_environment()
env.set_parallelism(1)

ds = env.from_collection(...,
type_info=Types...)

ds2 = env.from_collection(...,
type_info=Types...)

connect_ds = ds.connect(ds2)
connect_ds.key_by(lambda a: a[0], lambda a: a[0]).flat_map(JoinStream(),
Types...)

env.execute()

...

Test 3: Windowing

Bytewax

import bytewax.operators as op
import bytewax.operators.windowing as win
from bytewax.dataflow import Dataflow
from bytewax.operators.windowing import EventClock, TumblingWindower,
WindowMetadata

...

flow = Dataflow("windowing")

align_to = datetime(..., tzinfo=timezone.utc)
stream = op.input("input", flow, ...)
keyed_stream = op.key_on("key_on_user", stream, lambda e: e["user"])
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clock = EventClock(lambda e: e["time"],
wait_for_system_duration=timedelta(seconds=0))
windower = TumblingWindower(length=timedelta(seconds=10), align_to=align_to)

win_out = win.collect_window("add", keyed_stream, clock, windower)

op.output("out", win_out.down, ...)

...

PyFlink

from pyflink.datastream.connectors.file_system import FileSink,
OutputFileConfig, RollingPolicy
from pyflink.common import Types, WatermarkStrategy, Time, Encoder
from pyflink.common.watermark_strategy import TimestampAssigner
from pyflink.datastream import StreamExecutionEnvironment,
ProcessWindowFunction
from pyflink.datastream.window import TumblingEventTimeWindows, TimeWindow

...

class MyTimestampAssigner(TimestampAssigner):
def extract_timestamp(self, value, record_timestamp) -> int:

return int(value[1])

class CountWindowProcessFunction(ProcessWindowFunction[tuple, tuple, str,
TimeWindow]):

def process(self,
key: str,
context: ProcessWindowFunction.Context[TimeWindow],
elements: Iterable[tuple]) -> Iterable[tuple]:

return [(key, context.window().start, context.window().end, len([e for
e in elements]))]

env = StreamExecutionEnvironment.get_execution_environment()
env.set_parallelism(1)

win_stream = env.from_collection(...,
type_info=Types...)

watermark_strategy = WatermarkStrategy.for_monotonous_timestamps() \
.with_timestamp_assigner(MyTimestampAssigner())

ds = win_stream.assign_timestamps_and_watermarks(watermark_strategy) \
.key_by(lambda x: x[0], key_type=Types...) \
.window(TumblingEventTimeWindows.of(Time.milliseconds(5))) \
.process(CountWindowProcessFunction(),
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Types...)

env.execute()

...
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About Bytewax

Bytewax was started to support organizations develop machine learning and AI
capabilities particularly managing the data to support machine learning and AI
inference. To fulfill this mission, Bytewax developed the open source project Python
stream processing project of the same name. Bytewax Python stream processor
supports a wide variety of use cases that leverage advanced operations like joining data
streams, computing windowed calculations, maintaining representations of state,
tracking progress, managing out-of-order data, and more. Some of these applications
include

1. processing data for recommendation systems,
2. anomaly detection in physical and virtual systems,
3. fraud detection for financial institutions,
4. processing unstructured data for search and AI systems,
5. analyzing virtual systems in real time.

Bytewax also provides a commercial offering (Bytewax Modules and the Bytewax
Platform) to extend the capabilities of the open source library to cover the complexities
of writing, scaling, and managing many stream processing workflows. Together, the
open source library, the Modules, and the Platform provide a complete data
management solution for real-time and streaming data processing.

Bytewax’s Python interface and cloud-native architecture make it the easiest stream
processing system for developers resulting in organizations ability to bring products to
market faster and with a lower burden of development and maintenance. All resulting in
a lower TCO and higher ROI on development projects, as outlined in this comparison
with the leading stream processing tool, Apache Flink.
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About McKnight Consulting Group

Information Management is all about enabling an organization to have data in the best
place to succeed to meet company goals. Mature data practices can integrate an entire
organization across all core functions. Proper integration of that data facilitates the flow
of information throughout the organization which allows for better decisions – made
faster and with fewer errors. In short, well-done data can yield a better run company
flush with real-time information... and with less costs.

However, before those benefits can be realized, a company must go through the
business transformation of an implementation and systems integration. For many that
have been involved in those types of projects in the past – data warehousing, master
data, big data, analytics - the path toward a successful implementation and integration
can seem never-ending at times and almost unachievable. Not so with McKnight
Consulting Group (MCG) as your integration partner, because MCG has successfully
implemented data solutions for our clients for over a decade. We understand the critical
importance of setting clear, realistic expectations up front and ensuring that time-to-
value is achieved quickly.

MCG has helped over 100 clients with analytics, big data, master data management
and “all data” strategies and implementations across a variety of industries and
worldwide locations. MCG offers flexible implementation methodologies that will fit the
deployment model of your choice. The best methodologies, the best talent in the
industry and a leadership team committed to client success makes MCG the right
choice to help lead your project.

MCG, led by industry leader William McKnight, has deep data experience in a variety of
industries that will enable your business to incorporate best practices while
implementing leading technology. See www.mcknightcg.com.
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Disclaimer

McKnight Consulting Group (MCG) runs all its tests to strict ethical standards. The
results of the report are the objective and unbiased results of the application of queries
to the simulations described in the report. The report clearly defines the selected criteria
and process used to establish the field test. The report also clearly states the data set
sizes, the platforms, the methods, etc. that were used. The reader is left to determine
for themselves how to qualify the information for their individual needs. The report does
not make any claims regarding third-party certification and presents the objective results
received from the application of the process to the criteria as described in the report.
The report strictly measures performance and does not purport to evaluate other factors
that potential customers may find relevant when making a purchase decision. This is a
sponsored report. The client chose its configuration, while MCG chose the test,
configured the database and testing application, and ran the tests. MCG also chose the
most compatible configurations for the other tested platforms. Choosing compatible
configurations is subject to judgment. The information necessary to replicate this test is
included. Readers are encouraged to compile their own representative configuration
and test it for themselves.
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